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Previous papers began the development of a finite model for particles. Here 
various predictions of the model are derived. It is shown that the the model 
predicts a finite number of leptons and basic hadron isospin multiplets (127 to 
be precise). It predicts a different generation behavior for leptons and quarks 
than the standard model. A mass formula considered previously is used to predict 
masses of leptons and mesons that have not yet been observed. 

1. P A R T I C L E  G R A P H S  

In a model  for e lementary particles presented in Gudde r  (1988, and 
to appear) ,  a basic role was played by the symmetr ic  g roup  $3. This g roup  
has six elements and it was used to describe the physical  symmetries o f  the 
color  set 

S :  {r, y, b, f, fi, b} 

The Cayley  graph  cor responding  to $3 is illustrated in Figure 1. 
In  the Cayley graph,  if we identify the vertex pairs (r, f), (y,)5), (b,/7), 

we obtain a new graph  B. I f  we identify the vertex triples (r, y, b), (~, y, 6), 
we obtain  a graph  M. Finally, if we identify all o f  the vertices, we obtain 
a graph  L. These graphs  are illustrated in Figure 2. 

The graphs B, M, and L cor respond to baryons,  mesons,  and leptons, 
respectively. We interpret  the vertices as quarklike consti tuents and the 
edges represent  s trong (or color) interactions. More  precisely, the edges 
represent possible interaction paths for the force mediat ing gluons. The 
vertex pair  identification in B means that  each of  three vertices possesses 
one o f  the three colors r, y, b in the case o f  a particle and one o f  the three 
anticolors f, 35, 6 in the case o f  an antiparticle. The triplet identification in 
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r Y Fig. 1. Cayley graph. 
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Fig. 2. The graphs B, M and L. 

M means that one of the vertices possesses a color and the other an anticolor. 
The complete identification in L results in a single vertex having no color. 

It was shown in Gudder  (to appear) that in order to describe decay 
processes of elementary particles, edges can "migrate" from one vertex to 
another. We define a migration of B to be B itself or B altered by a migration 
of one or more edges. A migration of M is defined similarly. Figure 3 
illustrates some migrations of B and M. 

We call subgraphs of  L, lepton graphs; subgraphs of migrations of M, 
meson graphs; and subgraphs of migrations of B, baryon graphs. In essence, 
if a graph has 12 or fewer edges with one, two, or three vertices, then it is 
a lepton, meson, or baryon graph, respectively. To describe a particle 
completely, we introduce the helicity and charge of a vertex. Each vertex 
has a (z component of) spin •  (up, down). Moreover, the vertex of a 

Fig. 3. Migrations of B and M. 
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lepton graph has (electric) charge 0 or +1, while each vertex of a meson 
or baryon graph has charge •  or •  We now postulate the following 
charge rules for our graphs. 

(C1) The sum of  the charges is integral. 
(C2) For a lepton graph, if the vertex has an odd number of loops, 

then its charge is +1 and if the vertex has an even nonzero number of loops, 
then its charge is 0. For a meson or baryon graph, if a vertex has an odd 
number of  loops, then its charge is +1/3 and i fa  vertex has an even nonzero 
number of  loops, then its charge is •  

Of course, C1 automatically holds for any lepton graph. If  a lepton 
graph satisfies C2, it is called an admissible lepton graph. The admissible 
lepton graphs are illustrated in Figure 4. The first six are the known leptons, 
while the last eight form predicted new generations that we call 71, T 2, ~.3, 
7 4 together with their neutrinos. The numbers labeling the vertices designate 
the number of loops on that vertex. An unlabeled vertex has no loops. For 
simplicity, we do not label the charges. 

We next postulate the following meson spin rules. Motivation for these 
rules are given in Gudder  (1988, and to appear). 

(M1) The two vertices have opposite spin if and only if they are joined 
by one or two edges. They have the same spin if and only if they are joined 
by three edges. 

(M2) For opposite spin, if both vertices have at least one loop, then 
they are joined by two edges and if exactly one vertex has at least one loop, 
then they are joined by one edge. 

A meson graph that obeys C1, C2, M1, M2 is called an admissible 
meson graph. We postulate that there is a one-to-one correspondence 
between meson isospin multiplets and admissible meson graphs. Figure 5 
illustrates this correspondence by exhibiting all admissible meson graphs. 
In this figure an open circle represents a vertex with spin 1/2 and a filled 
circle represents a vertex with spin -1 /2 .  We do not label the charges of 
vertices; if this is done, the individual members of  a multiplet are obtained. 
The mesons ~r, K, ,/, p, K* as well as the first few Kj, K*,  "qjk, and W~ 
have been observed. Thus, the model predicts a total of 58 basic meson 
isospin multiplets [excited meson states can also be described (Gudder,  
1988) but we shall not consider these here]. Notice that vertices with no 
loops correspond to down and up quarks, while vertices with 1, 2, 3, and 

1 2 3 4 5 6 7 8 9 I0 I I  12 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
e ~'e ]2 ~ 7" ~r 7"1 ~r I 7"2 Ur2 T3 ~'~ T4 Ur4 

Fig. 4. Admissible lepton graphs. 
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Admissible meson graphs. 

4 loops  co r r e spond  to s t range,  cha rmed ,  bo t tom,  and top  quarks ,  respec-  
t ively. Thus ,  there  is no need  to pos tu la te  var ious  quark  flavors in this 
mode l ;  these  mere ly  c o r r e s p o n d  to vert ices wi th  var ious  number s  o f  loops .  
I f  the  spins  o f  the  ver t ices  are reversed,  the  par t ic les  (and  thei r  g raphs )  are  
cons ide red  to be the  same.  F ina l ly ,  we pos tu la t e  b a r y o n  sp in  rules. Again ,  
these  rules are mo t iva t ed  in G u d d e r  (1988, and  to appea r ) .  
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A A1A, A, A4A A,A,A  
N, A As = Ac A3 = Ab A4 A5 A6 A7 As 
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B43 B~ 

Fig. 6. Admis s ib l e  ba ryon  graphs ,  sp in  1/2. 

(B1) Two vertices have opposite spin if and only if they are joined by 
one edge and they have the same spin if and only if they are joined by two 
edges. 

(B2) If two vertices have the same charge and the same number of 
loops, they have the same spin. If two vertices have different nonzero number 
of loops, they have the same spin. 

A baryon graph that obeys C1, C2, Bt, B2 is called an admissible baryon 
graph. We again postulate that there is a one-to-one correspondence by 
exhibiting all admissible baryon graphs (Figs. 6 and 7). Thus, the model 
predicts 55 basic baryon isospin multiplets. 

2. PARTICLE MASSES 

A partial derivation for mass formulas was given in Gudder (1988). 
The values given by these formulas agreed with the mass values of known 
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Admissible baryon graphs, spin 3/2. 

particles to within 1%. We now apply these formulas to predict the masses 
for some of the new particles derived in Section 1. In the present work we 
concentrate on the massive leptons and the mesons. 

We postulate that the mass of  a basic particle is the sum of two terms. 
The first term is the total mass of  its vertices and the second term is the 
total energy of its gluons (which are assumed massless). We first consider 
the vertex mass. Let G be the graph of a basic particle and let u be a vertex 
of  G. We denote by l the number  of loops on u, by l' the number  of loops 
on vertices of  G other than u, and by s the (absolute) total spin of  the 
particle. Let O(x) = 0 if x <~ O, O(x) = 1 if x > 0, and let d be the number  of  
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edges incident to u. In mass units for which ~" radians equals 70 MeV, we 
postulate that the mass of  a vertex u is given as follows. For leptons 

For basic mesons 

where 

mu=wE�89189 

rnu = ~-[1+ max( f ( / ) ,  O(d - 1)g(/))] 

8 g( l) =-~ I'2(1'-1) 

The lepton formula and the first three terms of  the meson formula were 
derived in Gudder  (1988). We have added a new term which does not affect 
the work in Gudder  (1988) since we only considered I-< 3 there. 

We also have a spin-loop interaction term in our meson mass formula. 
I f  ll denotes the total number  of  loops, then the total mass of  the vertices 
in a basic meson is 

My=Y. mu-2~rs(ll-2)[~-(11-3)O(11-1)] 

For massive leptons (other than the electron, which we do not consider 
here) the formula for M~ is merely My = m,. 

We next consider gluon energies. It should first be understood that we 
use the name gluon to conform with the usual terminology, but it might be 
preferable to choose a different name such as "graphon."  In the present 
model, the gluons (or graphons) mediate both the strong and weak interac- 
tions and they are even present in leptons. There is no need for introducing 
weak gauge bosons in this context. We assume that gluons perform a 
quantum random walk along the edges of  a particle graph. Roughly speak- 
ing, when a gluon moves along an edge joining two different vertices, it 
mediates the strong force and when it moves along a loop, it mediates the 
weak force. The number  of  loops on a vertex, which determines the flavor 
of  that vertex, affects the total gluon energy. 

As described in Gudder  (1988), the gluon random walk is dictated by 
an absorpt ion-emission matrix T. The matrix T is the direct sum of matrices 
of  the form 
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and 

1 
M. =-~n [ ei~U-k)~/n]' n = 2 , 3  . . . .  , O ~ j , k < - n - 1  

For example,  the tauon r has three loops whose motions are assumed to 
be independent  and the resulting T is given by the 6 • 6 matrix 

T ( r )  = N~| N~| N2 

The nucleon N has two vertices of degree 3 and one vertex of degree 2. 
The resulting T(N) is given by the 8 x 8 matrix 

T(N)  = M3~ M30 M2 

Since the dynamics of  a gluon is governed by a unitary matrix T, we 
conclude that the gluon energy values are related to the eigenvalues of  T. 
The precise relationship between these two values is described in Gudder  
(1988). Denoting the total gluon energy of a particle by Eg, the mass of  the 
particle is given by 

m--Mo+~. 

Using this equation, the predicted masses of  the massive leptons (except 
the electron) and some of the mesons are summarized in Tables I and II. 
Since the eigenvalue calculations for the most massive mesons are quite 
tedious, we have only estimated them. This does not affect the result 
significantly, since the vertex mass terms dominate. Notice how close the 
masses of  the predicted K6* and K*  mesons are to the weak gauge bosons 
W and Z, respectively. We conjecture that W and Z are actually these 
mesons. The experimental mass values are taken from M. Anguilar-Benitez, 
et al. (1988). 

T a b l e  I .  L e p t o n  M a s s e s  

M a s s  ( G e V )  E x p e r i m e n t a l  

L e p t o n  Mv/ zr Eg/ ~ M~ + Eg v a l u e  

/x 0.5 1 0.105 0 .1056  

r 2.5 23 1.785 1.7845 

r I 7 .166  125 9 .252  - -  

r 2 14.5 371 26.985 - -  

~.3 24.5 825 59.465 - -  

z 4 37.17 1551 111 .172  - -  



T a b l e  II. M e s o n  M a s s e s  

M a s s  (GeV)  E x p e r i m e n t a l  

L e p t o n  M,,/7"/" Eg/ rc M,~ + Eg va lue  

1 1 0,140 0 .13957 

K 1 6 0 ,490 0 .4937 

'0 1 6.75 0.5425 0.5488 

p 1 10 0 .770 0 .770 

K *  1.666 11,066 0.891 0 .892 

"q 11 1 12.75 0 .9625 0 .9575 

~7"1 1 13,5 1.015 1,0194 

Kz 3,666 23 1.867 1.8693 

K *  17.333 11.38 2 .010 2 ,010 

'02~ 14.333 13.75 1.966 1.9693 

'0~  15.333 16.3 2 .214 2.1127 

'022 22.333 20.25 2.981 2.979 

'0*2 21 23.57 3 ,120 3.097 

K 3 15 60 5.250 5,277 

K *  61 16.61 5.433 5.325 

r/31 63 15.88 5,521 - -  

'0~1 61.333 21.34 5.787 - -  

'032 63 18.88 5.731 - -  

'0*2 65 21.66 6 .066 - -  

'033 97 19.13 8.129 - -  
'0*3 105 30.17 9 .462 9 .460 

K 4 66.6 125 13.412 - -  

K4* 211.27 16.80 15.965 - -  

'041 194.60 22.25 15.179 - -  

'04"~ 214.60 23.54 16.670 - -  

'042 194.60 25.25 15.389 - -  

'04*2 220.60 21.85 16.972 - -  

7743 194.60 27.38 15.538 - -  

'04"3 229.27 27.08 17.945 - -  

'044 257 25.25 19.758 

'04gr 285 38.27 22.629 - -  
Ks 130.33 226 24.943 - -  

K *  459 24.82 33.867 - -  

'0sl 397 26 29 .610 - -  

r/5*l 465 31.55 34.749 - -  

'052 397 26 29.610 - -  

'0*2 473.67 29.87 35.248 - -  

"05*3 485 35.10 36.407 - -  

'0*4 499 37.29 37 .540  - -  

r/5 ~ 534.34 34 39 .784  - -  

K 6 513 371 61 .880  - -  

K ~  1136 29.4 81.578 81 • 1.3 ( W )  

K 7 239 568 56 .490 - -  

KT* 1291.66 - -32  92.7 9 2 . 4 •  1.8 ( Z )  

K s 262.34  825 76 .114 - -  

K *  1905.01 - -35  135.8 - -  

K 9 2415.40  1150 249.578 - -  

K *  3537 .40  - -38  250.3 - -  

Klo  5449 1551 490.00  - -  
K11 1539.63 2036 1220.074 - -  
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